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Purpose. Data from single individuals, or a small group of subjects
may influence non-linear mixed effects model selection. Diagnostics
routinely applied in model! building may identify such individuals, but
these methods are not specifically designed for that purpose and are,
therefore, not optimal. We describe two likelihood-based diagnostics
for identifying individuals that can influence the choice between two
competing models.

Methods. One method is based on a jackknife of the raw data on the
individual level and refitting the model to each new data set. The
second method is a calculation which utilises the contribution each
individual make to the objective function values under each of the two
models. The two methods were applied to model selection during
analysis of a real data set.

Results. The agreement between the methods was high. Individuals
for whom there was a discrepancy between the methods tended to be
those for which neither of the contending models described the data
appropriately. Both methods identified individuals that influenced the
mode! selection.

Conclusions. Two objective, specific and quantitative methods for
identifying influential individuals in nonlinear mixed effects mode!
selection have been presented. One of the methods doesn’t require
additional model fitting and is therefore particularly attractive.

KEY WORDS: model selection; mixed effects modeling; jackknife;
case deletion; NONMEM.

INTRODUCTION

Models that describe the pharmacokinetics and pharmaco-
dynamics in the target patient population are often characterized
using sparse data and/or non-lincar-mixed effects modeling.
Different model building strategies have been suggested to
appropriately describe the characteristics (I1-4), but all involve
testing a multitude of models for their fit to the data. The
models are often partly tested in a sequential order, where
models are compared and the most suitable model, as judged
by some criteria, is retained for the next step. Each step may
involve the selection of some part of the structural, statistical
or covariate model.

It is a recognized risk that the selection of one model over
another may heavily rely on a single or a few individuals’ data.
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Individuals may influence model selection for different reasons.
First, they may be representative of the population, but contain
information that is lacking or sparse in other individuals. There
may, for example, be more data from some individuals than
others, or their data may be located at times or doses where
there is little other data. Also, there may be individuals who
are at the extremes of covariate distributions and therefore
provide much of the information about the strength of the
parameter-covariate relationship. Second, there may be individ-
uvals who are truly different from the main population and their
data reflect this. Last, there may be error in some of the data
and this may be manifested as influential individuals. The first
type of influential individual can often be discerned from the
last two types, which are usually termed outliers. For outliers,
it is often difficult to judge whether they represent a true feature
of the individual or error in data. It should be noted that outliers
may be without influence on the model selection, but such
outliers are not a concern in this presentation. The action taken
when an influential individual has been identified depends on
the nature of its influence, the purpose of the analysis and
whether it is judged to reflect true characteristics, be high
leverage or outlying. Regardless of what the interpretation is,
knowledge that the model, or a part of it, is influenced by a
single or a few individuals is usually sufficient to warrant
caution in extrapolation of the results.

Influential individuals may be of importance in at least
two respects: selection between models, and, on the components
(parameter estimates) of the model(s) of interest. Previous work
in non-linear mixed effects modeling has focused on the latter,
where Mandema er al. (5) suggested a case-deletion strategy
to assess the presence of influential individuals. In the building
of population pharmacokinetic and pharmacodynamic models,
it is common to use individual parameter estimates in prelimi-
nary covariate model building (1). Stepwise building of general-
ized additive models (GAM) have been suggested as a strategy
to identify candidate covariate relationships (3). Measures for
individual influence on components of the final generalized
additive model can be obtained analytically and, in addition,
bootstrap approaches to identify influential individuals in the
covariate model building have also been described (6). Some
of these procedures have been incorporated into the population
model building software Xpose (7). However, these procedures
rely on the quality of the individual parameter estimates and
measure the influence in the nonlinear mixed effects modeling
only in an indirect way. Also, they are only applicable for
covariate model building and not when influential individuals
for structural or statistical model components are to be identi-
fied. In the present work, we describe procedures for identifying
influential individuals during nonlinear mixed effects model
building. We compare an approach based on case-deletion to
one based on individual contribution to the likelihood value.

METHODS

Case-Deletion

During model building using the NONMEM program,
model selection is typically based on the objective function
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some on its notation. Normally, the objective function value
would be defined by two entities: the model and the data used
to fit the model. In the following, we will also concern ourselves
with the objective function value of a model applied to data
other than those used to estimate its parameter values. Thus
three components are necessary to define the objective function
value: the structure of the model, the data used to define its
parameters, and the data to which the model is applied in the
evaluation of the objective function value. Comparisons will
be made between a basic (B) and a full (F) model and between
data sets that contain the data from all (n) subjects, all but one
(n-1) subjects or a single (i) subject. To exemplify the notation,
the objective function value of the basic model with parameters
derived from all data and applied to the data from subject i
will be denoted Og ;.

One way of assessing the influence of a single individual
is to monitor how the difference in objective function value
between two models changes when it is based on all data
compared with all data minus the individual in question.
80,ckknitei given by Eq. 1, will provide such a diagnostic for
identifying individuals whose data support the more complex
model and individuals whose data will not. The former will
have negative values and the latter zero or positive values.
Individuals with high positive values of 8Ojckknitcs Will be
referred to as ‘masking’ individuals, as without their presence,
the full model would provide a larger improvement in the
description of the data. Conversely, individuals with high nega-
tive values of 80ycxumices Will betermed ‘driving’.

Aojackknife.i = (Oppn — Ogan) = Opnini — Oaeini) (1)

A straight-forward procedure to obtain AOjycknite,i 18 to fit
both the full and reduced model to the full data set and to a
data set where the data of the subject in question has been
omitted. AOj ckunire; is then obtained according to Eq. 1. As
indicated by the notation, this general methodology is termed
the jackknife (8) and although it has not to our knowledge
been applied in this particular context, it is a straightforward
application of the jackknife.

The objective function value of a model for a given data
set is the sum of the individual contributions, where the latter
can be obtained as part of the output from a NONMEM analysis.
A second procedure that makes use of these and calculates
individual contributions to the objective function value differ-
ence between the full and reduced model, is shown in Eq. 2.
The middle part of the equation is included to demonstrate the
similarity between the AOj,cxunitei aNd A Oyigerencei Measures.

AQyitterenced = (Ornn— Ogan) — (Opnn-i = Oban-i)
= (Opni — Ogad) )

AOyitierence; Obtained in this manner, is termed the “difference”
method, since its calculation is a straightforward difference
under the same model. The jack-knife and difference procedures
will be compared with respect to identification of influential
individuals. For illustration, consider a situation where, using
the full data set, there is no difference in objective function
value between the full and the basic model (O = Og). If a
certain individual i was omitted, however, a difference between
the two models would appear, such that O < Og. Such an
individual would have been masking the relationship in the full
data set, and both AO gifierence.i aNd AOjycqnire.; Would be positive.

1261

Data

Data from a Phase 11, multi-center, dose-finding study of
oral moxonidine tablets versus placebo in patients with conges-
tive heart failure are used to assess and illustrate the procedures
above. The study was a parallel group design where patients
received placebo or one of three moxonidine treatments. Active
treatment started at 0.1 mg twice daily and was escalated to a
predefined dose, 0.1, 0. 2, or 0.3 mg twice daily. The pharmaco-
kinetic data have been used previously to illustrate methodologi-
cal work regarding nonlinear mixed effects model building (9).
Pharmacokinetic sampling was performed after the first dose
and after 12 weeks of therapy, of which the last 8 weeks had
been on the same dose. The target sampling times were 0.5, 1,
1.5, 2, 4, 6 and 8 hours after the morning dose. In addition, a
trough sample was also collected immediately before intake of
the steady state dose. In total, 1022 moxonidine concentration
measurements were available from 74 patients. Four subjects
were studied only after the first dose as they dropped out of
the study before the second study occasion. With respect to the
dosing history, patients were assumed to adhere to the twice
daily administration with twelve hour dosing intervals. The last
dose before the monitoring of the concentration-time profile
was administered in the presence of the clinic staff.

Covariates considered during the course of the population
analysis presented here were: age (median 66 yrs, range 43-78
yrs), creatinine clearance (CRCL; median 65 ml/min, range
30-142 ml/min) which was calculated according to Cockroft
and Gault (10), gender (59 males) and concomitant medication
with ACE-inhibitors (present in 47 subjects) or digoxin (present
in 48 subjects) as two separate covariates. Other characteristics
of the patients are described in Karlsson er al. (9).

Modeling

The starting model for describing the data was a one-
compartment model with first-order absorption and lag-time.
It was defined by the parameters clearance (CL), volume of
distribution (V), absorption rate constant (ka) and lag-time
(Tlag). For all parameters interindividual variability was also
estimated. The observed concentrations were log-transformed
and an additive residual error model was used (which approxi-
mately corresponds to a proportional error model on the untrans-
formed scale). All parameters of this model have been reported
earlier (9). Extensive model building diagnostics suggested that
the final model was similar to starting model with the addition
that a linear relationship between CL and creatinine CL should
be included in the model. In the following some model compari-
sons will be retested to investigate whether the model choice
may have been affected by one, or a few, influential individuals.
All modeling was performed using the first-order (FO) algo-
rithm implemented in NONMEM, version V (2). All model
comparisons that are reported herein are between hierarchical
models, and, for these, the likelihood ratio test is applicable
(2). For a one parameter difference between a basic and full
model, the difference in objective function values for achieving
statistical significance of p < 0.05, 0.01 and 0.001 are 3.84, 6.63
and 10.83, respectively. Og o4 (0 O Ogn-in—i 0T Opn—in—i) 18
standard output from NONMEM, whereas Og , ; (or Og,;) is not.
The latter can be obtained by evaluating (without estimation)
the data for the single individual i under the final parameter
estimates. This can be implemented in a number of different
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Fig. 1. ldentification of influential individuals for selecting a model
with or without lag-time. Positive and negative values indicate masking
and driving individuals, respectively. Plot symbol is the ID number.

ways into NONMEM. We used a code that extracted these
values during a final pass through the data after the population
parameters had been determined.

RESULTS

Omitting the lag-time component from the starting model
resulted in an increase of the objective function value of 96.4.
From Fig. 1 it can be seen that subjects 38, 54 and 55 may
be driving this relationship. As expected, AOgijerencei and
AOj,ckknife; are similar but not identical. Omitting the three
driving subjects and refitting the full and reduced (i.e. with lag-
time) models results in decrease in the difference in objective
function of 33.0. Thus, the three individuals appear to be respon-
sible for a large portion of the difference between the models
with and without lag-time. However, the inclusion of lag-time
is not solely dependent upon these individuals, but is also
motivated in their absence.

Addition of covariance between CL and V resulted in a
decrease in the objective function value of 18.7. Potentially
masking (ID 65) and driving (ID 18) subjects can be identified

Table L.
Run Model AO* Comment
1 Starting —
2 —Lag-time 96.4
3 +Correlation(CL,V) —18.7 Correlation(CL,V) = 0.59
4 CL ~ CRCL® —18.6 CL (L/h) = 17.7 + 0.14*CLCR
5 CL ~ Age —16.9 CL (L/h) = 54.5 — 0.42*Age
6 CL ~ ACE-inhibitors — 7.6 CLAcg/CLyo ace = 1.18
7 CL ~ Digoxin — 2.9 CLpigoxin/CLuo pigoxin = 1.11

“ Objective function value relative to that of Run 1
b The sign ~ denotes “is a function of.”
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Fig. 2. ldentification of influential individuals for selecting a model
with or without correlation between CL and V. Also see legend to Fig. 1.

in Fig. 2. Omitting cither of these two subjects does not change
the model building choice or the parameter estimates in any
great way. Subjects 38 and 64, that don’t adhere to the general
trend of a high correlation between the methods, are further
discussed below.

Significant (p < 0.001) relationships were found between
CL and both CRCL and AGE (Table I; Runs 4 and 5). CL. was
predicted to be positively and negatively correlated to CRCL
and AGE, respectively. As the differences between the reduced
and the full models were more than 15, and no single driving
individual showed a AOj,ckknite.i OF AOyiggerences lower than —3.2
(Figs. 3 and 4), it is clear that the result is not dependent on
any one single individual. In general, the detected masking and
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Fig. 3. ldentification of influential individuals for selecting a model
with or without CLCR influencing CL.. Also see legend to Fig. 1.
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Fig. 4. Identification of influential individuals for selecting a model
with or without age influencing CL. Also see legend to Fig. 1.

driving individuals are those that could have been predicted.
Thus, for the CL versus AGE relationship, ID’s 49, 18 and 12
are young individuals with below average CL, whereas 1D 9
is an old subject with above average CL.

Patients on concomitant medication with ACE-inhibitors
had a significantly (p < 0.01) higher CL than other patients.
In a data set where the data from the driving individuals 53,
43 and 48 (Fig. 5) have been omitted, the covariate is no longer
significant even at the 0.05 level.

No significant relationship was found between CL and
digoxin use (Table 1, Run 7). However, individual 13 appears
to be a potentially masking subject (Fig. 6) and when this
individual was dropped from the data set, a significant (p <
0.01) relationships was found.
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Fig. S. ldentification of influential individuals for selecting a model
with or without concomitant medication with ACE-inhibitors influenc-
ing CL. Also see legend to Fig. 1.
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Fig. 6. ldentification of influential individuals for selecting a model
with or without concomitant medication with digoxin influencing CL.
Also see legend to Fig. 1.

It is not surprising that patients with higher CL (ID 8, 13,
25)orlower CL (1D 18,43, 48), are often influential individuals.
Neither is it surprising that individuals with extreme values of
continuous covariates, such as the oldest (ID 39, 44, 52) and
youngest (ID 12, 49, 55) or those with the highest (ID 8, 54,
72) or lowest (ID 23, 42, 53) CLCR often are among the more
influential for the detection of the covariate relationships. There
are other individuals that appear not only to be influential
individuals in several of the model selections, but also display
differences between AOjnirei and AOyierencei- Most pro-
nounced is this in subjects 38 and 64, but also in subjects 13
and 53. These individuals have higher than average, but not
extreme, values of CL. The common feature of these individuals
is that their concentration-time profiles are not well character-
ised by the one-compartment, first-order absorption model. It
is notable that the influence of such subjects on model selection
is not easily predictable. ID 64, for example, has a high CL
and is concomitantly treated with ACE, but despite this appears
as a masking individual for this relationship. ID 13 displays a
clear lag-time, but yet is masking with respect to the inclusion
of alagtime. ID 38 has likewise a high CL and is concomitantly
treated with DIG, but appears as masking as judged by
AOjyckknife.i- For this individual AO;gerence; appears to be more
in line with what can be expected. The same is true for the
difference between two methods with respect to ID 38 and
correlation between CL and V (Run 2). The individual estimate
of V for this individual was close to that of the typical individual,
115 versus 121 L, respectively. Therefore it seems surprising
that the influence of this individuals data on whether a correla-
tion between CL and V exist should be large as indicated
by A ckknitei-

DISCUSSION

The jackknife and difference methods, as implemented in
this work, appear to have properties that make them suitable
for identifying individuals with a large influence on model
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selection. The two methods differ from each other in an
important aspect. The difference method is used to investigate
the influence of an individual assuming that the individual’s
data can be appropriately described by at least one of the two
contending models. The jackknife procedure does not make
this assumption. Therefore, it is not surprising that the two
methods can give rise to different results and which happens
mainly for subjects for whom neither model appears to be ideal.
For example, a subject who, under the model(s) in question,
can be classified as driving by the difference method, because
the parameter and covariate values are both supporting the mean
population trend, may be classified by the jackknife method as
masking, since the covariate relationship appears stronger when
the overly noisy data from the subject is omitted from the
data set.

Despite the occasional differences between the methods,
the most striking feature is the similarity in the classification
of individuals. This indicates that, to a large extent, the two
methods could substitute for each other. The difference method
has the advantage that all the values necessary to calculate it
can be generated as part of a normal run and therefore it can
be made available without any extra computational burden. The
jackknife method, on the other hand, requires re-estimation of
the model parameters as many times as there are subjects in
the data set. In addition to the computational burden this causes,
there is the problem of unsuccessful terminations of the estima-
tion, or, of termination in a local minimum. In the example
presented, approximately 5% of all data sets had to be rerun
one or several times for these reasons.

The present investigation was restricted to only study hier-
archical models. It is, however, straightforward to adapt these
measures to non-hierarchical models if selection criteria based
on the objective function value are used. Also, the application
has been directed towards model building using the NONMEM
program, but the methods should be equally well suited for use
with other programs where model selection criteria based on
likelihood differences are applied.

Individual contributions to the objective function value
may have other uses than those described here. A related appli-
cation could be their use in determining which subjects influ-
ence parameter estimates in sensitivity analyses. Also, the
inspection of the individual contributions under a specific model
may give insight into which subjects are potentially influential
and different from the study population as a whole (Fig. 7).
For a data set like the present, where there is little variability
in number of observations per subject, subjects with a poor fit
can be identified as those with high values. For example, the
subjects with highest individual objective function values under
the starting model are ID 13, 38 and 64. These subjects were
also identified as influencing the model selection in a number
of comparisons as discussed above. If bootstrap methodology
(8) is to be used for calculation of posterior power (here how
frequent a certain feature would be identified in selection
between models), a bootstrap of the individual differences may
be a time-saving alternative to performing multiple analyses of
bootstrap data sets.

There are several routines available for identifying influen-
tial individuals in covariate model building. There are also
diagnostics that exist that may identify influential individuals
during structural and statistical model building, although the
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power of these general model building tools to identify influen-
tial individuals in nonlinear mixed effects model selection has
not been specifically addressed in the literature. Such methods
are qualitative and are based on empirical Bayes estimates or
rely on plots of data, predictions or residuals. The new methods
described herein are additional tools for identifying outliers in
model selection. Their advantage lies in that they are objective,
specific and quantitative. The addition of these diagnostic tools
may be particularly useful for identifying influential individuals
in the choice of structural and statistical models, where alterna-
tive diagnostics are not as applicable as for covariate models.
Neither of the two described methods can be practically imple-
mented in model building unless the relevant statistics can be
obtained in an automated fashion. Routines for doing so are
available from the authors (niclas.jonsson@biof.uu.se).

It is clear from the example given that data from a single
individual alone can give rise to a difference in objective func-
tion value between two models that is highly significant, at
least when, as in this case, a relatively rich sampling scheme
has been used. At least three negative consequences can be
identified by falsely believing a model that is driven by one or
a few individuals: (i) the precision in future predictions will
be lower than otherwise, (ii) other, real, relationships may be
masked, and (iii) collection of information that is unnecessary
(spurious covariate effects) or sub-optimal (sampling times)
may seem indicated. The opposite, that individuals mask real
relationships may be particularly frequent with relationships
that originally are based on a relatively few number of subjects,
as is often the case with for example drug interactions or when
the population study is based on relatively few individuals. The
latter is often the case in studies in children, when both number
of samples and subjects are generally low.

The suggested diagnostics identify the most influential
individuals in model selection. Talthough the scale of the indi-
vidual contribution is directly related to that used for testing
significance between models, the related question of whether
the subject is an outlier or only have highly informative data
cannot be decided based on this diagnostic alone. Neither can
the question of what the appropriate procedure is, once an
influential individual has been identified. To quote from a recent
overview of diagnostic tools: “. .. model adequacy (a) should
be carried out with respect to the substantive questions of
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interest and (b) cannot be carried out in isolation of the context;
in particular the interpretation of diagnostics requires subject-
matter knowledge” (11).

The art of population analysis has been increasing in com-
plexity as more tools and diagnostics are developed that aid
the model building process. However, this can only be to the
good as the data analyst is guided to look more and more
closely at the results obtained, their reliability and their pre-
dictive capacity. Also, with increased automated diagnostic
tools this can be achieved without an increased total analysis
time. The new methods presented in this paper should help
identify individuals that may drive or mask decisions during
the model building process, but should not be considered as a
substitute for basic background knowledge that should help the
analyst determine if the relationships and models found are
fundamentally reasonable.
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